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1 . 0  INTRODUCTION 

This  report  concerns  an  examination of the parameters  that 

govern  the  response  characteristics of linear,  distributed  structural  systems 

to  excitation  which  may  be  random  both  over  the  spatial  extent of the  sys- 

tem as well  as  in  time. Such  information is fundamental  to  response  pre- 

dictions  and,  subsequently,  to  rational  structural  design  in a random 

environment.  The  system  properties  are  those of finite  continuous  struc- 

tures  and  the  excitations  principally of interest  to  the  aerospace  community. 

Specifically,  the  system is assumed  governed by an  equation of motion of 

the  form .. 

where r denotes  a  spatial  vector, D a spatial  differential  operator, and 
?L 

f(2, t) an  applied  excitation.  The  coefficients  m  and c are  assumed  constant. 

Three  excitations,  each  an  acoustic  pressure  field,  are  considered.  Their 

properties  are  assumed  to be those’characteristic of 

0 a random  progressive wave  field 

0 a reverberant  field 

0 aerodynamic  turbulence 

Our  concern  focuses  upon  the  parameters  that  govern  the  system  response 

spectral  density S (T,,w) and  the  system  mean  square  response cr (2). 2 
Y Y 

Now the  basic  theory  and  mathematical  procedures  to  solve 

the  above  equation  for  both  the  response  spectral  density and response  in 

mean  square  are  not new . This  class of problems  has  been  considered 

in one form  or  another by many  investigators  associated  with  structural 

+ 

+The reader is referred to  the  references  at  the end of the  report .  
Although this list is by no means  exhaustive, it provides  an  ample  intro- 
duction to the  subject. 



vibrations  and  acoustics  and,  not  surprisingly,  about  as  many  forms of 

solutions  have  been  advanced.  The  notation,  method of formula tion, 

completeness of background  theory,  degree of approximation,  and d i s -  

play of results  vary  sufficiently s o  that it is not  always a simple  matter 

to  use  such  results  either  to  understand  or  to  solve  practical  problems. 

With such  variations,  the  underlying  theory so  necessary  to  problem 

solving  tends  to  be  masked  in a profusion of symbols  and  jargon.  This 

report  represents  an  attempt  to  consolidate  some of this  theory, and 

in so  doing,  perhaps  to  clarify  it  as  well. 

Most  important,  the  results  presented  here  provide  an 

indication of the  expected  response  behavior of distributed  structural 

systems  in  realistic  random  pressure  fields.  The  theme  throughout is 

to  provide  results  in  the  form of functional  expressions  and/or  parame- 

tric  plots  for,  in  this  way,  the shown information is applicable  to a wide 

variety of system  problems.  For  one-dimensional  systems,  the  results 

can  be  applied  directly.  For  systems  with  more  than a single  dimension, 

the results  can  be  adapted  to  compatible  forms of series  solutions. 

Although  the  virtually  traditional  results  for  joint  accep- 

tance  functions  and  the  mean  square  response  are  included,  in  addition, 

we consider  cross  acceptance  terms and detailed  evaluations of the 

response  spectral  densities and responses  in  mean  square  for  three 

typical  system  functions.  For  the  reverberant and turbulence  fields, 

conventional  filter  theory is used  to  approximate  the  structural  coupling 

of such pressure f i e lds ,  and  closed  form  results  thus  established  for 

the  mean  square  response.  These  "approximate"  analytical  expressions 

then are  compared  with  results  from  numerical  integration  computations. 

Exact  integrations  are  carried  out and evaluated  for  the  progressive 

wave  field. 

2 



2.0 BASIC THEORY 

This  section  concerns  mainly  derivations of the  spectral 

density  function  for  the  response  at  any  point  on a continuous system 

to  distributed  as  well as discretized  random  excitation.  Before we 

concentrate upon such  derivations,  let  us first examine, by way of 

review,  several  formulations of the  system  response  to an arb i t ra ry  

deterministic  excitation. To reinforce the physical  meaning of the  par- 

ameters  and terms  used  here,  much of the  theory is applied  to  solve 

illustrative  problems  for  simple  systems in Appendix A. 

2 .1  DETERMINISTIC  EXCITATION 

Let  us  assume the vibration  behavior of the  system  is 

governed by linear  theory,  there  is no interaction  between  the  system and 

excitation,  and  all  shown  functional  expressions  are  mathematically 

tractable.  The  damping  is  termed  proportional [ 6 ] .  

2.1.1 Modal  Theory 

The  time  history  at  the  position E of the  system  deflection 

y(c, t) may  be  expressed  as  the  series 

m 

where  +.(r)  is the  undamped  jth  normal  mode  and  q.(t) is the  deflection  in 

the  jth  normal  (or  principal)  coordinate.  Since  the  mode  shapes  are  ortho- 

gonal  functions  in  the  spatial  variable 2,  

J J 

3 



where 

R 

The  quantity m is called  the  generalized  mass. 
j 

The  undamped  normal  modes  are  obtained  from  solutions 

to  the  undamped  homogeneous  form of Equation (1. 1) 

This  equation  conventionally  is  solved for +.(r) by a separation-of-variables 

technique  subject  to  the  boundary  conditions of the  system.  The  generalized 

deflections  are  determined  from  solutions  to  the  second-order  differential 

e quation 

J 

where 

Frequently,  Equation (2 .6)  is   wri t ten  as  

3 1' 
'ci.(t) + 25.w.q.(t) + w.q.(t) = ET f . ( t )  

J J J J   J J  j J  
L 
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where 

C .  

By the  convolution  integral 

J 

where h.(cr) is  the  response  of.the  jth  single  degree-of-freedom  system  to 

a jth  unit  impulse  forcing  function  and CY is but  the  variable of integration. 

Consistent  with  the  "generalized"  terminology,  c. is termed  the  generalized 

J 

- J 
damping, k. the  generalized  stiffness, f . ( t )  the  generalized  force, w .  the  jth 

J J J 
modal  frequency of the  system, and 5. the  damping  factor  in  the  jth  mode. 

Since  the  form of Equation (2. 5) is that of a single  degree-of-freedom  system 

(or  a mechanical  oscillator, if you like),  the  modal  series  solution  may  be 

considered as a transformation  which  converts  the  physical  system  into  an 

equivalept  set of modal  oscillators,  infinite  in  number, and where  the output 

of each  oscillator is weighted  by its corresponding  mode  shape.  The  response 

of the  physical  system at 2 thus  can  be  represented by a summation of outputs 

from  each of the  modal  oscillators,  each  such output  weighted by 4.(a 

evaluated at x. 

J 

1 

5 



2.1 .2  Lmpulse Response  Formuation 

This  method  reflects  an  extension  to  multidimensional  systems 

of analysis  procedures  frequently  used in network  analysis; it sometimes is 

termed a Green's  function  approach.  Central to the  formulation is the  space- 

time  unit  inpulse  response  (h(z.,s,  t);  this  function  describes the response  time 

history of the  system  at g to a unit  impulse  excitation  applied  at 2. By con- 

volution  in  time  and  superposition  over  space [ 141, 

and,  alternatively, 

(2 .10)  

(2. loa)  

since  h(x, 2, t) = 0 for t 6 0. The system  function H(r, q, cc) and  h(g, s,, t) a r e  

re la ted  as  the Fourier  Transform  pair  

where 

(2. 11) 

(2. 12) 

Note that H(.r, . s,w) ., is amenable  to  experimental  measurements and, in  contrast 

to  the  series  representation of modal  theory,  appears  somewhat  simpler  in 

in  this  functional  form. 
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2. 1 . 3  Transform Solutions 

The  transforms  considered  are  l inear  transform  pairs of 

the  form 

where 

(2.14) 

Here we concentrate upon the Fourier  transform  pair  * 
00 

-00 

and  make  token  mention  in  Appendix A of the  La+ce  transform  pair 

F(s)  = f(t)e  dt, f(t) = F ( s ) e  ds I -st 

st  

b -i.o 

*This  pair  seemingly  is  popular  with  circuit  analysts and mathe- 
maticians.  Since  placement of the 2 ~ r  t e r m  and  sign of the exponent 
i s  a matter of choice,  various  equivalent  forms  are  used  through- 
out the  literature. 

(2.  15) 

(2 .  16) 
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For  our  purposes,  we  potentially can use  any  one of 

the three  t ransform pairs 

(2. 17) 

(2. 18) 

where Y(& w )  describes a wave  number-frequency  response  function.  Such 

a formulation  lends  itself  to  interpreting a distributed  structural  system  as 

a filter with  selectivity  characteristics  dependent upon  both  spatial  wave- 

number  and  frequency.  The  multiplicity of integration  defined by 

Equation  (2.18)  depends upon the  dimensions  associated  with  the  spatial 

variable 5; for  example, a two-dimensional  structure,  such  as a plate, 

requires a three-fold  integration  to  compute Y(_vk,w) whereas a one-dimensional 

structure  such as a beam,  requires  but a two-fold  integration. 

8 



By  the  Fourier  transform of the  equation of motion 

where  the  system  function H&,o) is of the  form 

(2.19) 

(2.20) 

and  the  wave  number-frequency  description of the  applied  excitation is 

given by 

(2.21) 

Conceptually,  Equation (2. 19) constitutes  a  solution  for  the  system  response 

to an  arbitrary  deterministic  loading  in  the  wave  number-frequency  domain. 

F o r  a  space-time  description of this  response, Y(&,w) is converted to y h ,  t) 

by the  inversion  integral of Equation  (2.18).  Although  very  compact in form, 

be  forewarned  that  the  evaluation of such  integrals  frequently  represents  a 

nontrivial  and/or  tedious  mathematical  task  for  practical  problems.  This 

comes  about,  in  part,  due to the  finite  transforms  that  are  encountered 

when  dealing  with  finite  structures. 

9 



2.2 RANDOM EXCITATION 

Let  us  make s everal  preliminary  remarks  at  the  outs  et. 

Correlation  functions (or, equivalently,  their  spectral  densities)  are 

representative of second  statistical  moments. For Gaussian  processes, 

only the  f irst  two moments  are  necessary to describe  the  statistical 

properties of the  process; fo r  Gaussian  processes  with  zero  mean, only 

the  second  moment  is  required. We also  recall  that  the  resultant  output 

of a linear  operation on a  Gaussian  process  is  itself  Gaussian. 

If the  input f(x, t) is  termed  random or stochastic,  this 

function  may  be  random  either  over  the  spatial  extent of the  structure 

or/and  in  time;  that is, both 2 and t may  be  random  variables.  Since  a 

linear  system  acts  as  a  linear  operator on the  input  process,  the  response 

process y(s, t)  is  random;  its  properties  are  governed by the  system 

characterist ics of the  structure  and  the  stochastic  nature of the  excitation. 

Thus, to characterize  the  output  process,  considerations of correlation 

functions,  spectral  density  functions and mean  square  response  values 

naturally ar is e. 

2.2.1 Distributed  Random  Loadings 

Let  us  examine  the  various  forms we may  choose to charac- 

terize  an  input  loading.  Consider f(n, t) when  the  excitation  is  said to be 

nonhomogeneous  and  nonstationary.  The  correlation  function  is of the  form 

(2.22) 

where E [ ]is  the  expectation of [ 1. This  expression  implies 

ensemble  averaging  over  all  combinations of spatial  locations and time; 

such  represents  a  most  formidable  task,  at  best. We know from  the 

Wiener  -Khintchin  relation  that a correlation  function  and  its  associated 

10 



spectral   density  are  related  as  a  Fourier  Transform  pair .  So, in a 

very  general  sense, 

(2.23) 

The  quantity  Sf(&&', w u) ) is called  a  generalized  power  spectral 
1' 2 

density or multi-dimensional  spectra of the  input  excitation. It is 

noted here   as  a two-sided  cross  spectral  density  functionally  dependent 

upon  the  wave  numbers ,k and  and  the  frequencies w and o For  

a one-dimensional  structure  in  the  spatial  variable x, 
- 1  2' 

0 -co 
(2.24) 

Q Q )  

R f (x,x1, t I '  t 2 ) = / e /  Sf (k,  k'' wi , w2 1 e  -i(kx  -klxl to t "w t ) 2d dk' dwldo2 

-aJ -co 

where  the  spatial  integrations  are  taken  over  the  extent of the  structure 

(in  this  case,  the  length). If a  two-dimensional  structure  were  assumed, 

the  integrations  implicit in Equation  (2.23)  would  be  six-fold;  four for  

the  spatial  coordinates,  and  two  for  the  time  variable. 

Now any  consistent  set of variables  can  be  selected  to 

establish  a F. T. pair.  Since  all  such  sets  provide  basically  the  same 

information, it should  be clear  that no set  inherently is more  "correct1'  

than  any  other  although,  admittedly,  some  forms  may  prove  mathematically' 

more convenient  than  others.  For  example, 

(2.25) 

I 



yields S (2, zl, wl, t2)  as a time  varying  cross  spectral  density  function 

while 
f 

(2.26) 

defines R (IC, kt ,  t t ) as a nonstationary  wave  number  -time  correlation 

function.  Practically,  the  format  used  is  dictated  by  costs and comprises 

associated with instrumentation,  experimental  tests,  data  processing, 

and  mathematical  form of the  prediction  model.  Simply,  there is no 

"best"  format  for all pr-oblems. It is appropriate to mention  here  that 

fast  transform  techniques  permit  the  rapid  computation of spectral 

quantities  directly  from  measured  data.  Correlation  functions,  likewise, 

can  be  determined  from  the  raw  data  although, due to fast   transform 

procedures, it frequently is more  efficient to compute  such  functions 

by  taking  the  Fourier  transforms of their  respective  spectral  densities. 

f 1' 2 

If we assume  the  process  f(g, t) is stationary,  then  the 

statistical  properties  in  time  become  dependent  only  upon  the  time 

difference T = t -t so  that  the  generalized  spectral  density  function 

of the  input f(2, t) is 
2 1  

where 

(2.27) 

(2.28) 



Now if the  process is ergodic  as  well, we can  replace  this  ensemble 

average by 
T 

J 
-T 

and for the  spatial  location r 
-0’ 

T 

(2.29) 

(2.30) 

where R (E T) is simply the autocorrelation  function of a  stationary 

forcing  function  evaluated  at r . 
-0 

f 0, 

If the  process f(g, t )  is assumed  homogeneous,  then 

the  statistical  characteristics  over  the  space of the  structure  become 

dependent only upon  the  spatial  difference u, = xl-s and  the  generalized 

spectral  density  becomes of the form 

where 

If the  process is assumed  isotropic,  then n-IrI-rI =. u and 

(2.31) 

(2.32) 

n 

R 

13 



Further,  if R (u, t t ) is assumed  ergodic,  then 
f 1 ' 2  

(2.34) 

and  the  generalized  spectra is 

Thus,  ergodicity  allows time averaging of a single  record  to  define 

the statistical nature of the t ime  characterist ics of the  process  whereas 

isotropicity  allows a single  set of spatial  averages  to  account  for  the 

spatial  characteristics.  For  reasons  principally  related  to  costs for more 

exacting  measurements as well as experimental  and  data  reduction pro- 

- grams, it is  almost  traditional (at this  point  in  time)  to  assume  the 

input  excitation as both  homogeneous  and  stationary.  Recent  advances [ 11 

concerning  nonstationary  properties  should  prove of value,  however. 

By way of a simple  illustration,  consider now various 

functional  representations of a pressure  field  obtained by a  speaker 

(energized  by  bandwidth  limited  white  noise)  directed  at  normal  incidence 

to a flat  rigid  surface.  Assuming no near  field  effects,  the  excitation 

which  impinges  on  the  surface is a stationary,  isotropic  plane  pressure 

wave at normal  incidence.  The  space-time  correlation  function  for  this 

random  pressure  wave  may  be  depicted as shown  in  Figure 2. l(a).  Other 

equivalent  descriptors  are  represented by Figures 2. l(b),  2. l ( c )  and 2. l(d);  

1 4  



! 

( a 1 Space - Time Correlation Function 

( b) Wave Number-Time Correlation Function 

FIGURE 2.1 RANDOM PRESSURE WAVE AT NORMAL INCIDENCE 
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( c)   Cross   Spec t ra l  Density 

( d l  G e n e r a l i z e d   P o w e r   S p e c t r a  

FIGURE 2.1 RANDOM PRESSURE WAVE AT NORMAL INCIDENCE 



these,  in  turn,  are  related  to  the  space-time  correlation  function by  the 

Fourier  transformations 

( 2 . 3 6 )  

We recognize  the  notation G ( u , w )  denotes a one-sided  spectral  density  in 

w; it is related  to S (u,w) by folding  the  w-axis of this  two-sided  function so  

that 

f 

f 

G ( u , ~ )  = 2 S (u,w), fo r  w z o 
= 0, fo r  w -= 0 

f f (2.37) 

2 . 2 . 2  Mean  Square  Response  Formulations 

Let  us  direct  our  attention now to  the  development of 

expressions  which,  when  evaluated,  lead  to  the  mean  square  response of 

the  system.  The  mean  square  response  at any location E of a linear 

distributed  structure  to  stationary  random  excitation  is  given by 

m 

( 2 . 3 8 )  

where S ( x , w )  i s  the  ordinary  spectral  density of the  response y ( ~ ,  t). 
Y 

Since 



~ ~ 

it follows  that 

(2.40) 

Since  the  key  to  computing m L . ( x )  is the  spectral  density S ( x , ~ ) ,  let  us  consider 
Y Y 

a formulation of this  spectral  function. 

Our  approach  is  to  establish a space-time  correlation 

function of y(x, t), take  advantage of certain  functional  relationships 

associated  with a linear  system,  then  take  the  Fourier  transform  according 

to  the  Wiener-Khintchin  relations.  Consistent  with  this  approach,  the  space- 

time  correlation  function  for y ( ~ ,  t) assumed  ergodic is 

(2.41) 

-T 
F o r  a modal  representation  such  as  that of Equation (2. 1 )  with  the  response 

qj(t)  written in t e rms  of the  convolution  integral 

cn 
P 

q.(t)  = h.( t )*f . ( t )=  h . ( I )  f .  (t -q)dl,  
J J J I J  

it follows  that 

(2.42) 

(2.43) 

18 



where 

T 

(2.44) 

-T 

We note  the form of Equation (2 .43)  is that of a double  convolution  in T ;  

thus, it can be expressed  more  compactly by 

j = l  k=l 

where 
T 
P 

-T 

For  a linear  system, 

where  the  modal  magnification  factor E. (w) is defined  as 
'J 

19 

(2.45) 

(2.46) 

(2 .47)  

( 2  e48) 



In expanded form, the  Wiener  -Khintchin  relations  defined 

previously as Equation  (2.39) are 

-a 
a, 

(2.49) 

-a, 

By  the  time  convolution  theorem [ 9 ,  pg. 261 , the F. T. of the  convolution 

of two  functions,  say f (t) and f (t),  equals  the  product of the F. T. of 
1 2 

these two functions. By applying  this  theorem  to a double  convolution 

in T, the F. T. of Equation  (2.45)  produces 

where 

H.(w)  x - 
J m, w,  2 H . ( w )  J 

J J  

R 

(2.50) 

(2.51) 

The  quantity s (x., ~ ' , w )  i s  the cross  spectral  density  function of the f 
distributed  random  loading. 

20 



It often i s  convenient  to  normalize  the  modal  cross  spec- 

tral density by dividing  by  the  surface  area of the  region R and  defining 

the  cross  spectral  density  function 

so that 

where 

(2. 52) 

R 
A 

The density  function C (I-, L',w) is termed a normalized  cross-spectral 

density  function  or a narrowband  cross  spectral  coefficient.  The 

cross  acceptance  function J (w) provides a measure of how well  the 

random  excitation  couples  with  the  structure  because of the  spatial  charac- 

ter is t ics  of both  the  loading  and  the  structure. 

f 

jk 

Now Equations  (2.38), ( 2 . 5 0 ) ,  and  (2.53)  collectively 

emphasize a distributed  linear  structure acts a s  a filter with selectivity 

characterist ics both in  space and in  frequency  (time).  Accordingly,  the  output 

response of such a filter is dependent  upon  the  nature of the  input  loading 

and  both  the  spatial  and  frequency  characteristics of the  filter. A system  thus 

may  be  excited  into  "resonance''  either  in  space  or  in  frequency,  or  coin- 

2 1  



cidentally  in  both  space  and  frequency.  Simultaneous  resonance  in botl-; 

space  and  frequency is  termed  "coincidence". To  predict  the  system output 

resDonse  to a random  distributed  loading,  in  addition t o  the  system  rep- 

resentation, we require a statistically  meaningful  description of the  manner 

in which  the  loading is  distributed  in  space  and  is  applied  in  time;  namely, 

the  cross  spectral  density C (z, %',a). For  a deterministic  loading , 
we need  an  explicit  representation of how the  loading is distributed 

over  the  structure and how it is applied  in  tirne;  namely, f(s, t). 

A 

-t 
f 

, 

Consider  the  form of the  spectral  density S (I;,w) for 
Y 

a continuous structure with  discretized,  stationary  random  loadings. 

The desired  result  is that of Equation ( 2 .  50)  with S. (a) altered  to 

account  for a se t  of In1 pointwise  inputs. If we represent  such a 

loading by 

Jk 

(2.55) 

then  the  modal  cross-correlation  function  defined by 

T 

( 2 .  56) 

-T 

t 
This  can  be  seen  easily by an  examination of the  properties  associated 
with  the generalized  force  f.(t) and  the  solution  for  the  normal  coordinate 
q j w .  J 
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reduces to 

n n  

where 

T 

-T 

By the Fourier  transform 

the  modal  cross-spectral  density  becomes 

n n  

r=l s = l  

since 

23 

(2.57) 

(2.58) 

(2.60) 

(2.61) 



2.2.3 Propert ies  of Special  Interest 

2 
Y  Y 

In the  previous  section,  formulations of S ( x , w )  and r~ (x) 
are presented  for  distributed  linear  systems  and  nonhomogeneous, 

stationary  loadings.  Theoretically,  we  can  argue  this  class of problems 

now has  been  reduced to two operations,  both  mathematical  in  nature, 

that of 

9 developing  the  required  integrand  function 

e carrying  out  the  stated  integrations 

As we  shall  see later in this  report,  even  with 'the simplest of structures 

and not overly-complicated  representations of random  pressure  fields,  the 

evaluation of the  integral  expressions  simply is not  a  casual  exercise  in 

mathematics.  Although a precise  evaluation is desirable  from a theoretical 

point of view  and  practically  advantageous as well,  assumptions  frequently 

are made to provide  "quick  order-of-magnitude  estimates" of response 

levels.  Such  assumptions  are  physically  plausible  and  essentially  reduce 

the complexity of the  integral  expressions so that  the  required  mathematical 

operations  can  be  carried  out  with  ease.  Let  us  mention  some of these 

approximations and special  situations as well. 

To remove  from  consideration  the  off-diagonal  terms  in  the 

summation  for u (g), we assume  a  lightly  damped  structural  system  where 2 
Y 

e the  modal  frequencies  are  sufficiently  separated so 
that 

8 the  mode  shapes  and  force  field  are  such  that 

0 the  force  field is such  that its frequency  charac- 
ter is t ics  are nearly  constant  over w 
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For  such  conditions, the off-diagonal or j # k terms  become  negligibly 

small  s o that 

where 

R 

The  mean  square  response  then  reduces  to  the  form 

(2.62) 

(2.63) 

(2.64) 

-a 
2 
Y 

Consider the above f o r m  of cr (3 for two extremes of 

spatial  correlation for a random  loading  with  white  noise time charac- 

teristics; that where  the  loading is correlated  uniformly  over  the 

structure  as  well as that where ,the loading  is  uncorrelated  perfectly in 

space. For an  isotropic  loading  correlated as a constant  over  the  extent 

of the  structure,  such as for a random  pressure  wave at normal  incidence, 

the  cross-spectral  density  reduces as 

Sf(r, r*,a) S 0 

and 

(2.65) 

(2.66) 



The  mean  square  response is given by 

OD 

-OD 

where 

"OD 

so  that 

(2 .67)  

(2.68) 

Now for a completely  uncorrelated  loading  over  the  extent of the  structure, 

such as that f o r  raindrops on a roof, 

and 

R 
s o  that  for 2 structure  with  uniform m a s s  distribution 

3 
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(2.70) 

(2.71) 

(2.72)  



because 

(2.73) 

R 

Pictorial  representations of such  loadings a r e  shown  by  the  sketches of 

Figures 2.1 and 2.2 

In  test  specification  and  vibration  predyction work, it 

frequently is required to estimate  an  "average"  response  level for  a 

s t ructural  zone. This  may  be  accomplished  by 

(2.74) 

R 
which,  due  to  orthogonality  properties of the normal  modes,  reduces to , 

<+ = 1 
j = l  

- W  

For uniform  structures  with  simple  harmonic  mode  shapes 

+.(E) = sin  k.x , where  k -j, 
-J J j -  1 

the  generalized  mass  and  integral of the  mode  shape  are 

me 
m. = - 

J 2 

(2.75) 

(2.76) 

(2.77) 
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( a )   S p a c e  - T i m e   C o r r e l a t i o n   F u n c t i o n  

( b )  C r o s s   S p e c t r a  I Dens  

FIGURE 2.2 SPATIALLY  UNCORRELATED WHITE 
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Then  for  the  spatially  correlated  white  noise  loading, 

2 8 s  00 

<u > = -  
Y 2 . 2  3 

j 
rrn j= l ,  3 J o 

I 

and,  for  the  spatially  uncorrelated  case, 

A 

2 

Y 
< u > =  - 

( 2 . 7 8 )  

( 2 . 7 9 )  

In a more  general   sense,   let  us go back and assess  the 

relative  magnitude of the  off-diagonal  terms of S (r,u) for  each of the two 

previous  loadings.  For  the  spatially  correlated  case, 
Y '  

( 2 . 8 0 )  

R R 

and 

= W S l - [  j) 
2 112 By residue  theory  with a 

J J  
and  b. = C.W., 

J .J J 
. .  

b. + bk 
( w )  H  (w)dw = 4= [ 2 2  J 

2 
( 2 .   8 2 )  

k J k [(a j-ak)-(bj+bk) 2t 4a  .(b  .+bk) 1 J J  
-m 
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and a relative  measure of the  importance of the j # k t e rms  is offered 

by the  ratio  (where m = mk) 
j 

(2.83) 

Figure 2 . 3  shows  the  behavior of this expression by a family of curves 

in  modal  damping  with 5 = 5 
j 

For  the  spatially  uncorrelated  loading,  the  cross-modal 

spectral  density is given by 

and,  due  to  modal  orthogonality, 

[ 0, for j # k 
s. (a) = 

Jk 1 2 /< (g)dr,   for j = k 
0 

(2.84) 

(2 .85)  

R 

2 

Y 
so  that  the  expression  for cr ( x )  reduces  to  Equation ( 2 . 7 2 )  which is void of 

j # k terms.  

As our last special  topic,  consider  the  situation  where  the 

spectral  characteristics of the  input  are  those of bandwidth limited  noise  in 

contrast  to  those of pure  white  noise.  For  this  condition, the mean  square 

response is written as 

2 
r Y (L) = i.:(., w )  dw (2. 86) 

- w  
C 
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FIGURE 2.3. RELATIVE EFFECT OF OFF-DIAGONAL MODAL TERMS 
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where w is the cutoff frequency of the  input  noise. F o r  a constant 

spectrum  over  the  bandwidth of the  input,  our  previous  work is altered 

only in  that 

C 

and,  for  the j = k terms,  

- w  
C 

where 
a 

(2.87) 

(2.88) 

0 

with a = w /w Upon integration,  the  quantity I. reduces  to 
c j '  J 

2 2 112 

2 112  2 2 i / 2  
i 

J T  i -a 2Tr( i - t;. ) i + a - 2a (i-<.) 

-1 2a5 I t a + 2a ( i - E . )  
1. = - tan i+ L i z  en - J (2 .90)  

J J 

The  behavior of this  function is shown by Figure  2.4  as a family of curves 

in  the  modal  damping  factor 5 Note the  curves  depict  the  system  function 

f H j ( w )  I a s  a highly  selective  bandpass  filter  in w for  small  values of 5 ; 
it  admits  frequency  components  centered  about  and  approximately  equal 

to w .  and rejects  the  components  where w /w.>>l. 
J C J  

j '  

j 
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2 . 2 . 4  Cross-Correlation  and  Related  Spectral  Density  Function 

Let  us  consider now the  correlation  function  and  the 

associated  spectral  density  between  the  input  excitation f(x, t) a t  r = 

and  the  response y(g', t). The  desired  cross-correlation  function is 

defined by 

x0 

T 
P 

- T  
J 

Upon substituting  the  modal  solution  for y ( ~ ' ,  t + T) and  rearranging  the  order 

of integration, 

where 
T 

Since 

( 2 . 9 2  

(2.94) 

the  cross  -spectral  density  becomes 

j=1 R 

3 4  



If the  input  loading is discretized  according  to  Equation (2.55), 

then 

f 
n - 

( 2 . 9 6 )  

since 

Therefore, 

j = l  s= l  

and  for a single  point  loading  at x = EO, 

m 

where S (E ,a) is the  ordinary  spectral  density of the  input  excitation  at 
f o  

r .  
-0 

It is useful  in  some  applications  to know the  cross-correlation 

function or  the  cross-spectral  density of the  response  measured  at two differ- 

ent  locations,  say  y(xo, t) and y ( ~ ,  t). Such a cross-correlation  function 

for a stationary  process is noted  by 
T 

(2.100) 
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By using  modal  theory  and  paralleling  the  development  for S ( x , * )  
used  earlier in the  text, 

Y 

Thus, 

and 

m m  

(2.102) 

(2.103) 

where both H.(w)  and S (0) are  those  previously  defined. 
J jk 

2.2.5  Alternate  Formulations 

In  the  previous  sections, we have  developed  formulations 

using  modal  theory  and  Fourier  transforms.  Direct  use of the  system  function 

provides  alternate  and  frequently  quoted  formulations. F o r  completeness, 

let us  make  token  mention of such  results. By substitution of the  response 

y(r, t) defined by the  convolution  integral  into  Equation  (2.41),  the  Fourier 

transform of the  resultant  expression  provides 

similarly, 



F o r  In' discretized  loadings, 

n n  
(2.106) 

n n  

where  both  summations  extend  over  the  range 1 . . . In1.  Since  the 

s t ructural   character is t ics   are  defined a s  continuous  fimctions  over 

both  space  and  frequency  instead of by an  infinite  modal  series,  these 

expressions  appear  more  compact  than  the  equivalent  modal  formulations. 

Such is intuitively  satisfying.  Practically,  the  development of such 

system  functions is not  without  measurement  and  computational  diffi- 

culties;  moreover,  the  resultant  double  integration, as with  that  for 

J .  (a), will  prove  somewhat  taxing  to  carry  out  for  practical  excitation 

fields. 
Jk 
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3 . 0  RESPONSE TO SELECTED  PRESSURE FIELDS 
._I ~. ~~ - . - . ... "" ~ 

Since  the  intent  here is exploratory  in  nature,  our 

concern  focuses upon the  forms of the  expressions  which  govern  the 

response of a structure  to  each of three  pressure  f ields adjudged of 

interest  to  the  aerospace  community.  Such  forms  are  fundamental 

to  any  rational  effort  in  design and in  response  prediction  for a structural  

system  immersed  in a random  environment.  Largely  to  simplify  the 

mathematics, we choose a structure of one dimension  with  harmonic 

mode  shapes.  Let  the  pressure  fields  be  characterized by the 

normalized  cross  -spectral  density  functions 

.. 1 

@ c (x, x ' ,o )  = 
sin  K(x-x') 

f K(x-x') 

Cf(x,xl ,o)  = e 
-OK Ix-x'l - 

cos K (X-x') 

where  the wave numbers K , K  and ?? a r e  
0 

These  normalized  cross-spectral  densities  imply  homogeneous,  stationary 

random  loadings and correspond  physically  to 

0 a random  progressive wave f i e l d  

0 a reverberant  pressure  f ield 

e aerodynamic  turbulence 

Let  us now apply  the  theory  developed  in  the  previous  section. 
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To paraphrase  some of our  earlier  remarks, we seek 
2 
Y 

Sy(x,w)  and u (x) for  each of the  three  pressure fields.  The  mean 

square  response is given by the  integral 

r (x) = [ s ( x , w )  d w  
2 
Y Y 

1 We choose to represent  the  response  spectral  density in its two-sided 

form 

and  the  modal  cross-spectral  density by 

where 

J .  (w) = -$ [ J+j(x) +,(xf)  Cf(x, x!, w) dx dx' 
J k  Q 

0 0  

We further  assume  harmonic  mode  shapes of the form 

($.(x) = sin k.x 
J J 

where  the  structural  wavenumber k. is given by 
J 

k . =  i L  , j = i ,  2 ,  3 . .  . . 
J 

and'the  associated  modal  frequency w by 
j 

2 E1 
j m i  

w = -4 (kj 1)" 

( 3 . 3 )  

(3 .9)  
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The  computation of the  mean  square  response,  therefore,  reduces  to 

two tasks  for  each  pressure  field: 

0 evaluating  the  spatial  integral  associated  with J (u) 

0 performing  the  spectral  integration  associated  with 

jk . 

2 
UY(X) 

3 .1  JOINT AND CROSS ACCEPTANCE CONSIDERATIONS 

For  homogeneous  pressure  fields, 

Cf(X, X'? w )  + Cf(X -x1) w )  (3.10) 

so that  for  our  problem 

I &  
J. (w) = .I 1 Cf(x-xl?w) sin  k.x  sin k x1 dx d x l  

Jk L? k 
(3.11) 

J 
0 0  

This  double  integral  can  be  expressed  in  terms of a single  integral  function 

by means of the  relationship [ 131 

/ /f(x3 x') dx  dx' = f(u,  v) I J I du dv 

R R' 

where  the  Jacobian is given  by 

with  the  coordinate  transformation 

u =  x -x' 

v = x + x '  

(3.12) 

(3. 13)  

(3.14) 

These  relationships  serve  to  map  the  area of integration R in  the x-XI plane 

into  the  area R' in  the  u-v  plane  as  shown  by  Figure  3.1. 



P 

0 

R R' 

P 

x - x '  Plane 

I u = x - x  

v = x + x '  V 

-e 0 L 

u - v Plane 
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Thus, we can  write  Equation (3 .  1 1 )  in  the  form 

1 21- lul 

Jk 2 J  2 1  
J. (a) = './ C&U,LL)  sin - k.(u+v) sin ~ J v - u )  dv du ( 3 .  15) 

I I 

and  for C (u,w) a symmetric  function  in  u, f 
I 

( 3 .  16) 

where 

2 e-u 1 [cos ' (avtbu) -cos - (bvtau) K (u) = 
1 

jk 2 2 2 
U 

( 3 .  17) 
1 I t COS - (-avtbu) -cos - (bv-au)  dv 
2 2 1 

with 

Upon integration of Equation ( 3 .  17), 

K (u) = A COS k.u t COS k u 
jk  jk [ J  k 1 

jk k 3 
jk J 

t B [sin kju + sin k u 

t c [s in  k.u - sin \u J 

( 3 .  18) 

( 3 .  19) 

4 2  



where  the  coefficients a r e  given by 

f 0, fo r  j # k 

t 1, f o r  j = k 

B 
jk (j+k).rr 

( 3 . 2 0 )  

C 
jk (j-k)r 

-" - [ 1 + (-1) 

The cross  acceptance  terms  then  take on value  according 

to  whether  the  sum j + k is either  an odd number  or  an  even  number.  For 

Such  behavior  can  be  anticipated  inasmuch  as we note  the  mode  shapes a r e  

even and odd harmonic  functions  referenced  to  the  mid-span of the  struc- 

ture.  Likewise,  the  pressure  fields  are  characterized  as  symmetrical 

r ea l  functions  in x-XI. Now products involving  even and odd functions 

a r e  odd, the  resultant  integration of an odd function  over  the  space of 

the  structure is zero;  those  products involving either both odd or both 

even  functions a r e  even,  the  resultant  integration of an  even  function 

over  the  space of the  structure  produces a value.  The sum j + k odd 

implies  an  integration of an odd function so that J .  (w) is zero,  as  expected. 
Jk 

F o r  j + k even,  the  coefficients  for  the  cross  acceptance 

become 

( 3 . 2 1 )  
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so that 

K ,  (u) =" k sin .k - j sin - 
Jk (k -J )T 

4 Q  [ Q 2 .2 
(3.22) 

Alternatively,  for  the  joint  acceptance,  we  find 

C&u, w )  K.(u) du 
J 

0 

where 

3.1.1  Progressive Wave Field 

Our description of the  inputs is limited  to quoting 

appropriate  normalized  cross-spectral  density  function  for  each 

pressure  fields. It is instructive  to  digress  here and consider a 

(3.23) 

(3.24) 

the 

of the 

mor e 

complete  calculation  leading  to C ( x , x ' , w ) .  We naturally  select   that  

which is mathematically  the  simplest, a plane  progressive wave. 
f + 

Figure  3.2  depicts a plane  wave of frequency f and  wave 
0 

length X which  impinges upon a surface at the  incidence  angle 8. The  wave 

speed c is noted as 
0 

c =  x f (3.25) 
0 0  

t 

developed  for  random  excitation.  Indeed, it may be simpler  to  use  any 
of the  techniques  mentioned  in  Section 2. 1 for  computing  the  response, 
squaring  this  result,  then  averaging  over  time  to  obtain  the  response  in 
mean  square. 

If the  input is of fixed  frequency, we need  not  use  the  formulation 
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and 

X 0  
COS e x =  ( 3 . 2 6 )  

where 1 is the  wave trace  referenced  to  the  surface.  For a harmonic wave 

which  propagates  in  the  positive x direction, 

f(x, t) = P sin ( w l t  - Kx) ( 3 . 2 7 )  

where w I  = 2r f '  and P is the pressure  amplitude  at x. The  spatial   cross- 
correlation  function  for  this wave is given by 

T 

R (x, x', T)=PP' lim J- 
f T-a  2T sin [w't-Kx] s in   [d( t+~)-Kxl]dt  

- T  

and  becomes  in  the  limit 

( 3 . 2 8 )  

( 3 . 2 9 )  

The  cross-spectral  density  then  is  determined  by  the  transformation 

so that 

which resolves to  the  complex  expression 

s (x,xI,w) = __ f COS K(xl-x) [ b ( w - d )  -t d ( w + d )  
4 I 

( 3 . 3 1 )  

(3.32) 
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Now if we normalize S ( x , x l , w )  according  to  the  ratio 
-% f 

given as Equation (2.52), 

A 
C (x, X I ,  w) = C (x, X I ,  w) - i Qf(x, x l , w )  

where C ( x , x ' , w )  is the  co-spectra of C (x, x ' , w )  and Q ( x , x l , w )  the 

associated  quad-spectra.  Due  to  homogeneity of the  excitation  field, 

f f 
h 

f f -  f 

( 3 .   3 3 )  

Sf(XIX, w) = Sf (x, x!, w )  
>: 

( 3 .   3 4 )  

s o  that the  cross-acceptance  function  reduces  to 

Jjk(w)  = -2 I JJij(x)+k(xT)2 Re[ef(x,xl ,w) dx  dx' 
1 3 ( 3 .   3 5 )  

0 0  

as the  quad-spectra  contribution  resolves  to  zero  over  the  double inte- 

gration. With 

D 2 
I 

S ( x o , 0 )  = Sf(X0'W) = - 0 

2 

( 3 .  3 6 )  
PP ' 

2 
P 
" - 1  

0 

the  cross  acceptance  becomes 

J. (a) = - I /y / +j(x)  +k(x ' )  Cf (x,x',  w )  dxdx' ( 3 .   3 7 )  
Jk Q 2  

0 0  

where 

which,  except for  the  delta  functions, i s  the  form quoted at  the  beginning 

of this  section  for a random  progressive  wave  field. 
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Consider now the  evaluation of J. (0). The  values  for 
Jk 

the  cross  acceptance  are  given by the  integral 

a 
J.  ( w )  = L2 1 Kjk(u) cos -I du WU 

Jk 2 1  C 
0 

(3.  39) 

which,  in  terms of the  variable P, produc‘es fo r  j # k 

(3.40) 

where 

F o r  the  joint  acceptance 

and, upon integration, 

(3.41) 

(3. 42) 

(3.43) 
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When a wave  number of the t r ace  of the progressive  wave  corresponds 

to  a modal  wave  number, 

For  this condition of spatial  resonance, the joint  acceptance  resolves 

to the constant J.( p) 

Plots 

modes are shown as 

J 
= 1 1 4 .  

of the  joint  acceptance  for  the first two  odd-numbered 

Figure 3-  3, and  for  the first two even-numbered 

modes as Figure 3 . 4 .  Of note is the Dronounced selectivity of each 

function,  in  particular the peaks  which  correspond  to  the  values of 

spatial  resonance.  The  odd-numbered  modes  display  low-pass  charac- 

terist ics  for P 5 1 whereas the even-numbered  modes  act  more  nearly 

like  band-pass  filters  over this same  range and reject  the  excitation 

components  below, say, p 5 0 . 1 .  

3 . 1 . 2  Reverberant  Pressure  Field 

For  this  field with. K = - w 

c y  

p 
Jjk(K) = 2 7  K.. Jk (u) sin K' du 

Ku 
0 

( 3 . 4 5 )  

which, in t e rms  of (3, yields  J .  ( p )  = 0 for j # k and j + k odd, while  for 

j # k and j + k even, 
Jk 

- j  [Cin T (p+k) - Cin i r  (P-kj) I (3 .  46 )  

5 1  



where 

Z (3.47) 

1 -cos x dx 
X 

0 

For  the  joint  acceptance, 

J . (K)  = 2 7 2 1  Kj(u) sin K’ du 
1 

J Ku 
0 

which  becomes 

1 
2 . 2  2 

IT (J -p  ) 
[ 1 - ( -1) j  cos ITp I 

where 

Z 

Si(z) = sin x 
dx 

0 

Polynomial  expressions  and/or  tabular  listings  for  the  functions 

Cin( z) and  Si( z)  a r e  . €ound in standard  tables of integrals [ 181. 

(3.48) 

(3.49) 

(3.50) 

Plots  of J . ( p \  and J (p) a r e  shown as   F igures  3. 5 through 
J jk 

3.8.  The  main  diagonal  expressions  for  the  odd-numbered  modes  are 

shown as Figure  3.5;  for  the  even-numbered  modes  as  Figure  3.7. 
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The  off-diagonal terms  for  the  odd-numbered  modes are  displayed  as 

Figure 3 . 6 ;  for  the  even-numbered  modes as Figure 3 . 8 .  

A s  is expected, a system  with  harmonic  modes  discrim- 

inates  between  individual as well a s  combinational s u m s  of even  and 

odd-numbered  modes.  For a reverberant  field,  the  joint  acceptance 

plot  for j = 1 bounds  the  other  joint  and  cross-acceptance  values; 

it has  nearly a constant  value  over . 01 5 p 5 1 and decays  with a constant 

(logarithmic)  slope beyond p > 1. For  all  modes  except  for j = 1, 

both  the  joint  and  cross  acceptance  appear  relatively  selective 

(near the various  resonant  frequencies) beyond  the first   resonance 

value.  For  lower  values of p,  say p I. 2, the  even-numbered  modes 

are  suppressed  whereas  the  odd-numbered  modes  are  characterized by 

constant  valued  functions  with  magnitudes  dependent upon the  mode 

numb e r . 

3 . 1 . 3  Aerodvnamic  Turbulence 

For this  excitation  with K = - - w 

u ’  
C 

(3.51) 

which,in  terms of p, yields  for j f k 

(3 .  52) 
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where  the  coefficients  are  given by 

Similarly,  the  joint  acceptance is expressed by the  integral 

(3.53) 

(3.54) 
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which  resolves  to 

where 

( 3 . 5 6 )  

i c =  
j J*U j CYpj [ [CYZ + 11 p; + I] 

The  remaining  terms  are  those  stated  previously. Th exponential  coefficient 

corresponds  to  that  used  eisewhere [ 17 ] , it is written as 

CY = 0 .1  + - O-.: [+] 
where d is the  depth of the  boundary  layer. b 

Plots of J.((3) and J ((3) a r e  shown by Figures 3 .  9 through 
J jk 

3.15.  Figures  3.9  through  3.11 show the  joint  and  cross  acceptance 

functions  for J / d ,  = 1 while Figures 3. 13 through 3. 16 display  these 

same  functions  for J / 6  = 30. For  the  modes  considered,  note 

that  the  off-diagonal o r  cross  acceptance  plots  have  negative  values 
b 

(3.57) 
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over  some  portion of the  range 1 I Q I 2 0. The  magnitude  and  behavior 

of such  values  are  shown by the  curves  referenced  to  the  lower  log  scale 

in  the  cross  acceptance  plots. 

Figures  3.9, 3. 12 and  3.13  intimate  the  spatial  selectivity 

characterist ics of the  system  in a turbulent  field  as  well as the  relative 

effect of boundary  layer  depth  on  the  joint  acceptance  functions.  The 

system  acts   as  a more  selective  filter in (3 for  the  thicker  boundary 

layers  and tends  to  suppress,  in  particular,  the  contributions  from  the 

even-numbered  modes  for (3 5 .5. Over  the  range . 01 I (35 1, the 

acceptance  magnitude  for  the j = 1 mode  dominates  the  values of the 

other  modes;  for (3 > 1, a curve  which  connects  the  acceptance  values  at s p a t i a l  

resonance for  each of the  modes  envelopes  (practically  speaking)  the 

major  contributions. Note that  the  thicker  boundary  layers  spread  the 

range of acceptance  values  over 01. 5 (3 51; the j = 1 term  increases  

f rom = 0.11  to z. 379 while  the j = 10 term decaeases  from 0.0009 

to 2 0. 0007. 
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3. 1.4 Approximate  Representations 

Upon inspection of the  mathematical  forms  which  govern 

the  acceptance  functions  for  both  the  reverberant  field  and  turbulence, 

it is clear  their substitution  into  Equation13. 5) will  yield  rather  compli- 

cated  integrands  for  the  integrals of the  mean  square  response. To 

c a r r y  out  such  integrations  over Q in  closed  form is an  enormous 

mathematical  task  both  in  complexity and in  tedium. One then  seeks 

refuge by specifying  simpler,  approximate  representations  for  the 

acceptance  functions. We examine  here two approximate  forms which 

rely upon  application of 

0 the  Schwartz  inequality 

0 simple  filter  theory 

The  Schwartz  inequality  is  given by [9] 

so that a bound on the  cross  acceptance  becomes 

2 
f By the  Schwartz  inequality  applied  to  the  bracketed  term  containing C (x,x ' ,a) ,  

( 3 . 6 0 )  

6 8  



~ 

where 

If we assume 

2 2 Cf (x, XI, 0) = c ( x - x ' , w ) ,  

then 

(3 .61 )  

(3 .62)  

( 3 . 6 3 )  

( 3 . 6 4 )  

S O  that 

which  agrees with that  already  established 1163. 

For the  harmonic  mode  shapes of Equation ( 3 . 7 ) ,  the bound 

becomes 
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and,  for  the three fields of concern to us, 

b plane  pressure  wave 

(3.67) 

9 reverberant  field 

e turbulence 

where P is given by Equation ( 3 .  57). Practically,  the  us  e of these  expres - 
ions  in  developing  closed  form  mean  square  response  results  is  limited 

severely  due to  the  mathematical  complexities  introduked by the  radicals. 

To avoid  such  problems,  simple  filter  functions  in p are  suggested  which 

can  be  made to  approximate  the  acceptance  functions as well  as  lend 

themselves  mathematically to  evaluation. 

We choose to  derive  filters  which  can  be  made t o  envelope 

approximately  the  maxima of the  reverberant and turbulence  excitations. 

Such filters  also  can  be  used to match  approximately  the  individual  accept- 

ance  functions.  From  Figures 3. 5 through  3.15, we note  the  maxima  are 

governed  by  the  values  for  the  various joint acceptances. By inspection, 

70 
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the envelope functions fo r  the  odd-numbered modes of the  reverberant 

field and the  turbulence  appear to  have'low-pass  characteristics of the 

form 

r 
(3.70) 

where r and q  are constants. The envelope for  the  even-numbered modes 

of the  reverberant field  seemingly have the  band-pass  characteristics 

(3.71) 

where p, as with r and q, is  a constant. By selecting values for  these 

constants, the filter  characteristics can be set to  match  (approximately) 

those of the  acceptance envelopes. 

Table 3 . 1  cites  the  numerical values for the  filter  constants 

used  in  this study. Figures 3.16, 3.17 and 3 . 1 8  provide  a  comparison of 

the  acceptance envelope function, the Schwartz  inequality and filter approx- 

imation for  the  reverberant field and turbulence.  Except for  the  range 

2 5 P 5 1 2  in Figure 3.16, the  filters provide a  tighter bound  on the joint 

acceptance envelopes than do the Schwartz  inequalities.  This exception 

can be eliminated by an  alternate  selection of filter  constants. 

Although conservative,  the  filter  roll-offs at the  higher 

frequencies do not provide a  satisfactory f i t  to  the  acceptance envelopes. 

This can be  corrected by introducing higher-order polynomial filters 

with effective  rolloffs somewhat less than 1 / p  It must be remembered 

the filters should not be designed solely to  match  the  acceptance  envelope.. 

Equally important  is  that  their  mathematical  form  be amenable to  inte- 

gration over P, preferably, by residue  theory. 
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3.2 MEAN SQUARE- RESPONSE RE.SULTS 

In this  section,  we  examine mean square  results  for 

the three previously  mentioned  pressure  fields  and  the  three  system 

functions 

Numerical  integration  results  are  prcsented  for  all  combinations of 

these  pressure  fields and system  functions.  Emphasis  however, is 

upon closed  form  results  for  all  system  functions  wherein  filter  approxi- 

mations  are  used  for  the  reverberant and  turbulence  excitations. 

Exact  closed  form  expressions  are shown in  Appendix B for  the  pro- 

gressive  field and  the f i r s t  two system  functions;  such  expressions 

are  evaluated,  then  displayed  here  in  graphical  form. 

3 . 2 .  1 General  Formulations 

As stated  earlier,   the  mean  square  response is given by 

the  integral 

m 

( 3 . 7 3 )  

76  



This  can  be  expressed as the double summation 

a m  

where I is the  integral 
jk 

(3.74) 

(3.75) 

and S(x ,'w ) +So. In terms of the  variable p, we can write I in  the form 
0 jk 

where  the  coefficient C is given by 1 

4 G o P  

2 3  m u  1 

- 
- 

and the  one-sided form of the  integral I ("by 
jk 

with 

For the modal damping sj = gk =i, 

(3.76) 

(3 .77)  

(3 .78)  

(3.79) 

(3.80) 
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where 

( 3 .  81) 

B(P) = 2 5  P I? [ j2(k4- ,  P P ) - k 
2 2  

and 

p.= - 
1 

TTC 

& W  

For  turbulence,  the  speed of sound c simply is replace  by U 
C 

For  the  second  system  function H ( 2 ' ( ~ )  
j 

where 

( 3 .  82)  

(3 .   83 )  

C2 = G B p w W 1  
L 

0 

( 3 .  84)  

with 

( 3 .  85)  
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Finally, for  the  third  system  function H ( 3 ) ( ~ ) ,  
j . .  

( 3 )  
I =  
jk '3 'jk 

(3. 86) 

where 

C3 = G 0 f 2  P 5  wi 

(3 .  87) 

and 

( 3 .  8 8 )  

With the  three  integrals  forms  related t o  the I integral, we now write 

the  mean  square  resp0ns.e  in  the  forms 
jk 

( 3 . 8 9 )  

These  expressions  are  used in  the numerical  integration. 
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3 . 2 . 2  Filter  Approximation  Formulations 

For  practical   reasons,   prime  concern  here  centers upon 

the  evaluation of the I integral  for  both the reverberant f ie ld  and  the 

aerodynamic  turbulence. Although  the progressive wave is of interest  and 

response  results  calculated  in  closed  form  for  the  system  functions 

H(l) (a) and H(2)(a), the  details of the  response  calculations w i l l  not  be 

elaborated  upon  here.  Rather a separate  discussion is presented  as 

Appendix B 

jk 

j j 

Using  the exact  expressions  for  the  cross  acceptance 

terms of either  the  reverberant  or  the  turbulence  excitation,  the  inte- 

gration of I is a formidable  task. In seeking  closed  form  results, 

the mathematics is  not  entirely  simple and  the  algebra  abundant s o  

that  meaningful and concise  expressions  are  not  easy  to  establish.  In 

fact,  such  expressions  have  yet  to  be  determined.  In  carrying out such 

(exact)  integrations  numerically,  it is difficult  to  develop  an  accurate 

understanding of the  parametric  effects  without  using a great  deal of 

computer  time.  This is due  largely  to  numerical  accuracy  problems 

which are  introduced  because  the  system and acceptance  functions  do 

not vary  smoothly  and  slowly  over  the  range of integration. 

j k  

Faced  with  these  analytical and computational  difficulties, 

yet  driven  by'the need for a "compromise"  solution, we explore  the  use 

of well  behaved  polynomial  filters  to  establish  estimates of the  response 

in  mean  square of multi-mode  distributed  systems.  Central  to  this  idea 

is the system  response  described by Figure 3.19. This  model implies 

the  output  response is accounted  for  by  contributions  from 

0 j distinct  normal  modes . : : 

0 a residual  impedance  for  the  mid-fpequency  range 

0 a residual  impedance  for  the  high  frequency  range 

. .  , '  
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We concentrate  here upon  the  output  due to  the  normal  modes  although 

these  same  filter  concepts  can  be  applied  to  include the residual  impe- 

dances.  Let  it  be  clearly  understood  that  in  this  report we strive not 

for  accuracy  over the range of mod.es considered.  Instead, we con- 

centrate upon simple  filter  forms  which  have  approx5mately the charac- 

terist ics of the desired  acceptance  functions, and a t  the same  time,  are 

amenable  to  integration  by  residue  theory.  By  adjusting the numerical 

values of the filter  constants, the accuracy of the filter  approximations 

can  be  improved  at will .  

Let  us  consider  an  abbreviated  derivation of the mean 

square  response for  the fi l ters J (p) and J (p), and the f i rs t   system 

function H.(o). Clearly,  results fo r  the system  function H(2) (w) then 

can  be  developed by simple  multiplication.  Thus, for  the second order 

fi l ter ,  

I I1 

J j 

where for  the  reverberant  field 

K;e L p =  - = u t ,  
TT 

t = -  
0 0 TTC 

and for  turbulence 

The  product of the  system  functions  are  given by 

(3.91) 

(3.92) 

(3 .  9 3 )  

82 



where 

with 

2 112  
a = w ( 1  - 5 . )  

b j  = C j  w 

j j J 

j 

The I integral  then  may  be  written  as 
jk 

and by residue  theory 

3 

I = 1 S ( 2 7 ~ i )  
2 

jk 0 r = l  c R r  

(3.  94) 

(3.95) 

(3.96) 

(3.97) 

where R is the rthresidue of H:w) H (w) J (w)  at its  poles  in  the  upper- 
half  plane. The poles  are  given by J k I r 

(3.98) 

- 
p3 - i x!zl" .e 

and, after  some  labor, 

4.rr .l S - r  
2 

I =  0 

2 2  2 jk A 
jk m m t (wj  -2bjq"Fq' ) j k o  

(3.99) 
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- .. 

where 

t 4 a 2 . (b.+bkl2 + f 
J J  4 q' ( w i  t 2 b 9' t st2) 

k 

with  the  symbol q' defined as the  ratio 

q 
q '  =T 

0 

The  main d.iagona1 terms  with I.. = I. reduce to 
JJ J 

For  the  fourth  order  f i l ter ,  

r P 2  JII(P) = 
[p - i (c td)]  [ p -i(c-d)] [p +i(cfd)] [ P  +i(c-d)] 

where  the  coefficients c and d are  related  to  the  filter  constants by 

The  integral I becomes 
jk 

I = e 2 S [H?(w)  Hk (w) JII (w) d w  
jk 0 3 

84 
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and by residue  theory 

I = 1 S ( 2 d )  2 
ik 0 5 Rr 

r=l 

where  the  poles in  the  upper-half  plane a r e  given  by 

= a .  + ib 
J j 

p 2  
= -a .  + ib 

J j 
(c+d) - 

p 3  - i t 

( 3 .  106) , 

(3.107) 

0 

p = i (c-d) 
t 

' 0  

After  some  additior,al  labor, 

(3.108) 

c ' td '  1 
8c'd'  -c'-d') 2 2  ) (ak + (bk  +c'+d') 
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where 

c =  [ (aj  -bj) ( a j  - b.  + 2p '  ) - 4 a .  b .  + qV4] 
2 2 2 2  2 2 2  

j J J J  

+ 16 a2b2[,f_ b 2  + P ' ~  J 2  
J J  J 

Division by t is noted by a pr ime  superscr ipt  so  that 
0 

CI = c / t o  p' = p/to 

d l  = d / to  q' = q / to  

F o r  the  main d i a g o n a l  terms,  

c '+d * 
8c'd' 4 + (c t+d1)2 + 2(a  2 2  -b. 1) 

1 
+ '  - [ 

j j J  3 
c'-d' 1 

- - 8c'd' [ "4 + ( c ' -d ' )  2 ((c '-d '  )2 + 2 ( a j  -b. 1 )  2 2  
J 

(3 .109)  

(3 .110)  

(3.111) 
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where 

2 2  2 2 2  

j J j J  J J  

2 
c = [ (as  -b2 ) (a  -b. + 2 p '  ) - 4 a.   b .  t q'"3 

(3.112) 

t 16 a j  2 2  b j   [a ; -  b 2 + P t 2  12 
J 

In much  the  same  manner, we derive  closed  form I 
jk 

results for  the  third  system  function H(3)(w)  and the fi l ters J (PI  and 

J,,(B). The  desired  integral is written  as 
j I 

(3.113) 

"a3 

where J (w) is  represented  by  either J (w) or J (a). F o r  the first   f i l ter ,  

the  residues  are  governed  by  Equation (3.97) S O  that 
jk I I1 
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where 

(3.115) 

For j = k, the I expression  reduces  to 
jk 

(3.116) 

F o r  the  second  filter, the residues  are  treated  according to Equation (3.106) 

s o  that 

(3.117) 

( ~ ' t d ' ) ~  1 

8c'd' t (bj-cl-d')'] [ a i  t (bktc'+d' )'] 

(c' -dl)  1 - 
8c'd' [ [a2 j t (bj-c'td')']  [ait(bk+c'-d' 
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where 

Bjk = (ai-b' - 2b b --w 2 2  ) -E 4a 2 .(b.+bk) 2 
j j k  k J J  

C = [iaj-b.)  2 2 2  - 4a 2 2  .b . t 2p' ' 2  (a 2 -b 2 .) t q' 
j J J J  j~ 

(3.118) 

t 16 a . b .  (a - b .  + p '  ) 
2 2  2 2 2 2  
J J  j J *  

For  j = k, the resultant  diagonal  term  becomes 

2 
r i  S r 

I. = 0 

J 4 t  2 
0 

5 

[ [ a s  + (b.-c'-d') 

1 
c'd' 'J [.5 + (bj+c'+d') 

J 

(c '  -dl)  1 - ' I d '  [ b2 + (bj  -c'+d')2] [as  -k (bj+c'-d') 

j 

(3.119) 

The  coefficient t is given  by  either  Equation (3.91) or  Equation (3. 92) 

and C. is that  quoted  above. 
0 

J 

3.2.3  Results 

In  the  preceeding  sections, w e  have  considered  formula- 

tions  intrinsically  related  to  determining  mean  square  response  values 

of a structural  system.  The  first  sections  deals  with  forms  compatible 

with  numerical  integration  while  the  second  section  concerns  filter 

approximations  results  in  closed  form.  Let  us now examine a numerical 

evaluation of these  theoretical  results. 
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The  three  system  functions  evaluated are  those  defined. 

by  Equation  (3.72).  For  light  values of damping,  say 5 .  5 .l, all  of 

the systems  display  selective  band-pass  characteristics.  The first 

expression  corresponds  to  the  familiar  displacement-to-force fre- 

quency  response  functions;  the  second,  modal  magnification  factors; 

and  the  third,  acceleration-to-force  system  functions.  Here, we assume 

the  equal  modal  damping <. = 0. 025. Accordingly,  the  characteristics 

of the  three  systems  are  shown  by  Figures  3.20  through  3.22  where 

R .  (P) is given  by  Equation  (3.80)  with j = k. The  remaining two sys-  

tem  functions  are  defined  in  Section 3.2.1. 

J .  

J 

(1) 
J 

The  output  response  in  mean  square of systems  with 

these  filter  characteristics  are  governed by  the  modal  summations of 

Equation ( 3 .  €9). For the reverberant  field,  integrands  proportional 

to I. (for j = k and j = 1,2,3. . 10) for  each  system  are shown  by 

Figures 3.26  through  3.28,  respectively.  Tables  3.2  through  3.7 show 
Jk 

the  integrated  values  for  each  mode  and  each  system;  these  values 

correspond  to  the  contribution of the  main  diagonal  terms  to  the  mean 

square  response. 

By comparing  the  filter  approximation  tabular  values 

f rom the  numerical  integration  with  the  closed  form  results,  confidence 

is eatablished  in the validity of the  analytical  work.  Also, by an  exer - 
cise of this  sort, we a r e  led  to  respect  that  general  class of numerical 

accuracy  problems  associated  with  the  integration of sharply  fluctua- 

ting  functions.  Such  problems  are  particularly  severe  for  the  cross 

term  integrations.  After  numerous  trials,  the  increments  used  in  the 
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TABLE 3.2 

j = 1  13.128 8 .958  8 .958  

j = 2  .16. 959 15.606 6. 094 (-2.) 

j = 3  16; 697 16.  020 2 .423  ( - 3 )  

j .= 4 16. 591 16.423 2.732 (-4) 

j = 5  4.192  (-5) 16. 376 16.251 

j = 6  16. ,056 16.613 9.891 (-6) 

j = 7  ’ 
. 15.  6.75 16.493 2.860  (-6) 

j = 8  15.  371 16.499 9.834 ( - 7 )  

j = 9  14. 831 . 16.394 ’ 3.808  ( -7)  

j = 10 9.149 10.663 1.009  (-7) 

MAIN DIAGONAL CONTRIBUTIONS ‘TO THE  MEAN SQUARE RESPONSE 

(REVERBERANT FIELD - NUMERICAL INTEGRATION OF INTEGRAND) 
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S Y S T E M  
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4 
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j = 1  

j = 2  

j = 3  

j = 4  

j = 5  

j = 6  

j = 7  

j = 8  

j = 9  

j = 10 

12.642 12.642 

7. 774  (-2) 19. 901 

1.058  (-2)  69.704 

7. 302  (-4) 47.858 

1.482  (-4) 59. 601 

2. 376  (-5) 39.  913 

6.465  (-6) 37.273 

1. 636 ( -6 )  27 .449 

5.603  (-7) 25.  927 

1.438  (-7) 14. 377 

26.096 

23.939 

70.966 

47. 801 

52.  910 

36.448 

30.260 

22.847 

18.199 

8.278 

TAB LE ‘3.3 MAIN DIAGONAL CONTRIBUTION TO THE MEAN  SQUARE  RESPONSE 

( REVERBERANT  FIELD-  NUMERICAL  INTEGRATION.  OF FILTER APPROXIMATION) 



j=2  7. 758  (-2)  19.  860  24.106 

j = 3  1. 061  (-2)  69.616  71.126 

j = 4  7.197  (-4)  47.168  47.832 

j = 5  1.474 (-4) 57.565  52.998 

j = 6  2.344  (-5)  39.373  36.594 

j = 7  6.432  (-6)  37.077  30.821 

j = 8  1.636  (-6) 27.470  23.568 

j = 9  6. 0'33  (-7) 25.972  19.253 

j = 10  1.488  (-7) 14.876 15. 713 I 

TABLE 3.4 MAIN DIAGONAL CONTRIBUTIONS TO THE  MEAN SQUARE RESPONSE 
(REVERBERANT  FIELD - FILTER APPROXIMATION  IN CLOSED FORM) 



= I ,  JJJ, =3( 

TABLE 3.5 

j = 1  1 3.037 3.037  3.459 

j = 2 1 2 .329 (-2.) 1 5.961 1 6..028, ' , 1 
j = 3  7. 038 (-4) 4.607  4 .283 

j = -4 1 5. 917 (-5) 1 3 .878 , 1 3.502 , 1 
j = 5  7.066  (-6)  2.788  2.243. 

j = 6  , ' 1.807 2.337 ' 1. 391  (-6) 

j = 7  " 1.' 561: 2.106 3.653  (-7) 

j = 8  ' 1.399 1.962 1.170 (-7) 

j = 9  1.264 1.856 4. 3lQ (-8) 

j = 10 0.652 1.328 1.328 (-8) 

MAIN  DIAGONAL  CONTRIBUTIONS TO  THE  MEAN SQUARE RESPONSE 

(TURBULENCE - NUMERICAL INTEGRATION OF INTEGRAND) 



I I 

j = 2  12.073  11.238 4.42 7 (-2.) 

j = 3  13. 977 14.194 2.151 (-3) 

j = 4  11.109  12.039 1. 822  (-4) 

, 

j = 5  7.922 9.107 2.296 (-5) 

j = 6  7.130. 5. 760 4.245  (-6) 
~ 1 

j = 7  5.669 9.831  (-7) 
~ 

4.250 

1 1 j = 8  1 2.825  (-7) I~ 4.705 'I 3.249 1 
I 

I 

j = 9  1~ 9.  322  (-8)  4.031 
I !  
I 

j = 10 1 2.  763 (-8) 'I 2.  763 
Ii 

I/ 1.142 
I! 

TABLE 3.6 MAIN DIAGONAL  CONTRIBUTIONS TO THE  MEAN  SQUARE  RESPONSE 

( TURBULENCE-NUMERICAL  INTEGRATION OF F ILTER  APPROXIMATION 



I I I I 

0 
VI 

+4 

Q 

9 

U 
CI 
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-3 
M 

h 

j = 1  I 3.483 3.483 4. 821 

// j = 2  4.410  (-2)  11.289  12.  080 
1 

j = 3  13. 987 14. 175 2.  160 (-3) 

j = 4  11.842 1. 807  (-4) 
" 7  

~ 

11.024 

~ I 

1 7.982 9. 051 2.  317 (-5) I j = 5  i r '  5.777 j = 6  I 4.177 (-6) 7.  016 
, 

9 
v 1 11 1 9. 773 (-7) 1 5.634 1 4.333 

c -- 
2. 792 (-7) 4.684  3,  352 

j = 9  2.663 4. 013 9.323  (-8) 

j = 10 2.164 2.  763 2. 763  (-8) 

TABLE 3.7 MAIN DIAGONAL CONTRIBUTIONS TO  THE  MEAN SQUARE RESPONSE 

(TURBULENCE - FILTER APPROXIMATION IN CLOSED FORM) 



numerical  integrations  over  the  range .01< (3 <lo0  follows:  the incre-  

mental  size of p over . O k  p 5 1 was A = .05; over 1 I p = 12, A = .l; over 

125 p 530 ,  A = .5; and over 305 p 5 100, A = 1. 

The  relative  contributions of the  off-diagonal  terms  to the 

mean  square  response  for  both  the  reverberant  field and turbulence  are 

shown  by  the tables  in  Appendix C. In this  study,  the  modal  frequencies 

vary  according  to w /o = (k/j)2 and the  modal  damping  has  the  same 

magnitude for  all  modes, 5 = 0. 025. Consistent  with  these  properties, 

the off-diagonal te rms  should  (and do) contribute  little  to  the  mean 

square  response  relative  to the diagonal  terms.  For  more  closely 

spaced  modal  frequencies,  say  when the frequency  spacing is within 

1.414, and/or  damping  values on the order  of 5 = 0.1, the effect of the 

off-diagonal  terms w i l l  become  more  pronounced. Due to  the  crude 

filter  representation  used, the integral  contributions of the off diagonal 

terms  are  accentuated, i n  particular,  for the higher  order  terms. 

k j  

j 

We note  the accuracy of the  filter  approximations  is 

lax.  Such is expected  inasmuch  as the filters  shapes  were.  set  to 

match  somewhat the  envelope  maxima of the acceptance  functions 

rather than  the  acceptance  shape for  each of the individual  modes. If 

the filter  constants  are  made  dependent upon  the mode  numbers,  the 

accuracy of the filter  approximations  can  be  improved by an  order of 

magnitude. By retaining  the  analytical  filter  results  in  parametric 

form,  this  modal  dependent  filter  scheme  can  be  implemented  with 

negligible  analytical  effort. 
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Normalized  plots of the  mean  square  response  to  the 

reverberant  field  are  represented  by  Figures 3.29  through 3.31; and 

to  the  aerodynamic  turbulence  by  Figures 3.32 through 3 . 3 4 .  For 

completeness,  the  mean  square  response ,to the  plane  progressive  wave 

is repeated  here as Figure 3 . 3 5 .  Since  the  variation of u (x) is sym- 

metric  relative  to  the  mid-span of the  structure, the  plots a r e  con- 

structed. only over  the  range 0 5 x/e 5 . 5. The  coefficients C , where 

n = 1,2,  3,  are  those  defined  in  Section 3.2.1. 

2 
Y 

n 

Of note is the  decisive  difference  in  form  and  magnitude 

between  the  response  for  the  system  function H.(o) and  the response 

for  the  other two system  functions  in the reverberant f ie ld  and  turbulence. 

The  response  for H . ( w )  essentially is that of  a unimodal  system  at w 

since  the  other  integral  contributions  are  minor  relative  to  the j = k = 1 

term;  thus, u (x) varies  over x approximately  as  sin r x / j  . The 

J 

J 1 

2 2 

Y 3 3 

response  for  both,m.w.H.(w) and m.mLH.(w) a r e  influenced  predominantly f5 

J J J   J J  
by  the  main  diagonal  terms. A l l  ten  terms  are  important  for  the  range 

of parameters  selected  here;  those beyond j = 10 would be  considerably 

less  important  due  to  the  rapid  roll-off of the  acceptance  functions. 

2 

.Y 
tion is similar for al l  of the  system  functions;  it is unimodal  in  its 

behavior. We note  this  variation  is  similar  to  that of H. (w)  in  either 

the  reverberant  field  or/and  the  turbulence.  For  the  system  functions 

m.w.H.(w) and m . w  H.(w) in  either  the  reverberant  field  or/and  the 

turbulence,  the  mean  square  response  variations  are  markedly  similar; 

the u (x) rises  rapidly  over the range 0 s x / f  5.1 and fluctuates only 

modestly  over . l  s x / f  5 . 5 .  If a larger  number of terms  were  used 

(we recall  j = 1,2.  . . 10 and k = 1,2. . . lo ) ,  their  contributions would 

tend to  smooth  the  fluctuations s o  that u (x) over . 1 5 x/e 5 9 would be 

nearly  constant. 

The  variation  in u (x) over x for  the  plane  wave  excita- 

J 

2 2 
J J J  J J  

2 
Y 

2 
Y 
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FIGURE 3.32 MEAN SQUARE  RESPONSE  TO AERODYNAMIC TURBULENCE 

(NUMERICAL  INTEGRATION OF INTEGRAND) 
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4.0 - SUMMARY REMARKS 

In this  report, we reviewed  briefly the theory  fundamen- 

tal  to  assessing the mean  square  response of distributed  linear  systems 

in a random  environment.  The  theory  emphasized  favors a modal  series 

representation and spectral  analysis;  hence,  attention  is  focused upon 

formulations  which  lead.  to  response  spectral  density  functions. Non- 

homogeneous,  nonstationary  excitations  are  mentioned;  homogeneous, 

stationary  excitations  are  examined  in  depth.  Point-wise  loadings  are 

treated  as well. 

To promote  insight  into  the  physical  meaning of the  theory, 

some of the formulations  presented  in  the  text  are  used  to  compute  mean 

square  response  values of representative  structural  systems  to  each of 

three  distributed  random  excitations.  The  basic  structural  system is a 

very  simple one. It  is a one dimensional  system, and assumed  to  have 

harmonic  mode  shapes,  well  separated  modal  frequencies, and equal 

damping ( 5  = 0.025)  in  all  modes.  Such  assumptions  do not necessarily 

compromise the generality of the results  and,  at  the  same  time,  serve 

to  simplify  enormously  the  mathematics. The  excitations  examined, 

three i n  number,   are  al l  homogeneous and stationary  acoustic  pressure 

fields. Chief interest  concerns  those  excitations  representative of a 

reverberant  field and aerodynamic  turbulence,  although a random  pro- 

gressive wave  field is treated. 

j 

We examined  three  system  functions  with  frequency  charac- 
3 3 

teristics  designated  by H . ( w ) ,  m . w  H.(w) and m.o" H.(w) .  For  each  system 
L 

3 3 . i  3 J J ~~ ~ 

function and each  excitation,  the  response  contributions  are  determined 

for the jk terms  where j = 1,Z. . . 10 and k = 1,Z. . . 10. These  data  are 

shown in  Appendices B and C only for j = 1,2. . . 9 and k = 1 , Z .  . . 9. 
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In the  text,  the  contributions  for j = k = 1,2.  . . 10 are  considered  in 

detail  for  the  reverberant  field  and  turbulence;  that is, the system 

functions,  the  acceptance  functions,  and  the  products of these  functions 

(response  spectral  densities)  are  all  displayed.  Similar  detail is given 

to  the  progressive  wave  in  Appendix B. 

Of note a r e  the  filter  approximation  formulations.  The 

filters  are  designed s o  that  their  frequency  characteristics  can  be  set 

to  match  the  joint  acceptance  functions  for  the  reverberant and turbu- 

lence  excitations. In  addition,  and  equally  important,  these  filter  forms 

(after  multiplication by the  system  functions)  are  amenable  to  integration 

by residue  theory s o  that  parametric  mean  square  response  results  can 

be  obtained  in  closed  form  with  but a moderate  mathematical  effort. 

Closed form  resul ts   are  shown  for  all  three  system  functions. When 

compared  with  the  values  computed  by  numerical  integration of the f i l -  

ter  approximations,  these  theoretical  results  agree  very  closely s o  that 

validity  in  the  theoretical  work is established. Of use  a lso  are  the  closed 

form  results  for the  progressive.wave  excitation;  the  details of this  ana- 

lytical  effort is shown as  Appendix B. 

For  a consistent  set of system-excitation  parameters,  the 
2 
Y 

variations of u (x) in  x display  similar  patterns  in  behavior  although  the 

accuracy of the  filter  approximations  relative  to  numerical  integration 

of the  exact  integrands is not  satisfactory.  However,  the  filter  results 

can  be  made  to m tch  almost  exactly  the  numerical  integration  results 

simply  by  selecting  other  filter  coefficient  values  (note  that  with  the  closed 

form  results,  this  matching  activity  reduces  to  but  an  exercise  in  algebra). 

Having se t  the  coefficients  in  this  way,  we  then  can  plot  the  filter  charac- 

ter is t ics  and observe  what  constitutes a Itgood"  approximation of the  force 

field  acceptance  functions.  Perhaps  less  crudely, we can  establish a 
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dependency of the  filter  coefficient  values on the  mode  numbers and 

use  this  form of model  in  the  response  calculations.  These  are  but two 

plausible  approximation  schemes;  others  certainly  can  be  devised  by 

the  reader. 

A s  with  all  work of this  nature,  the  results  collectively 

point  out a number of additional  tasks  fundamental  to not  only  under- 

standing  the  subtleties of the  underlying  theory,  but  developing  theore- 

tically  proper  response  predictions as well.  Some of these follow: 

for  the  turbulence and reverberant  field,  formulate a 

modal  dependency  relationship  for  the  filter  coefficients 

in  the  filter  approximation  response  model 

develop  residual  impedance  concepts so  that  response 

predictions  can  be  made  when  modal  concepts  are 

inappropriate  or  inordinately  complicated 

examine  the  variation of u (x) for  structural  confi- 

gurations  with  random  system  functions 

examine  the  variation of (x) for  variations  in p 

and /or  nonconstant modal.. damping 

consider  estimates of O- (x,) for  system  functions  with 

modal  frequency  spacings  other  than w /w = (k/j)' 

consider  acceptance  functions  for  orthogonal  functions 

other  than  simple  harmonic  mode  shapes 

consider  acceptance  functions  for  systems  with  sta- 

tistical  variation  in  the  mode  shapes 

2 
Y 

2 

Y 

2 
Y 

k j  

This  list is by  no means  exhaustive,  although  such  results would go far to 

answer  questions of immediate  practical  interest  to  the  analyst. 
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Perhaps  the  greatest  value of this  report  is the  implicit 

generality of the  results;  the  true  worth,  however,  depends  to no small  

extent on the  resourcefulness of the user.  I$ nothing else, the  included 

plots,  tables, and theoretical  expressions  all  serve one extremely  impor- 

tant  purpose.  They  provide a latent  "feel"  for  the  nature,  complexity and 

expected  forms of solutions  for  problems  indigenous  to  structural  response 

predictions  in  random  environments. R'adical departure  from  the  general 

behavior  shown  here would be  suspect  even  for  more  complicated  struc- 

tural  systems.  The  results  shown  thus  provide  solid  theoretical  bases 

from which  to  establish,  however  simple,  response  predictions. 

The  direct  extension of these  results  to  structural  configu- 

rations of more  than one dimension is not  unreasonable, though  not  with- 

out  additional  effort.  Such  an  extension  requires a formulation  which 

makes  repetitive  use of the  integral  forms  presented  here.  This  approach 

has  precedence  in  classical  treatments of plate  and  shell  structures and 

in  more  practical  applications  as  well [4, 171 . 
The reader  is urged  to  examine  the  various  appendices  in 

a manner  something  other  than  that of a cursory  inspection. Although 

not  profound,  the  problems of Appendix A should  promote  physical  insight 

into  the  theory  and  clarify  some of the  symbolism of the  text.  Appendix 

B concerns  in  detail  the  response  calculations  associated  with  random 

progressive  waves.  The  integral  forms  here  should  prove of interest  to 

the  reader who is more  analytically  inclined. Appendix C shows  the 

modal  cross  terms  for  all  three  system  functions  and  both  the  reverberant 

field and turbulence.  Appendix D represents a small  collection of integral 

results  important  to  the  work of this  report  as  well  as  fundamental  to  non- 

stationary  excitation  problems. For the  serious  analyst,  time  spent  in 

becoming  acquainted  with  the  integral  forms  in  this  brief  table  should 

prove a very  worthwhile  investment  indeed. 
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APPENDIX A 

Here,  example  problems  and  their  solutions  are 

presented  to  illustrate  some of the  theory  presented  in  the  text 

of this  report.  The  equation  numbers  re'fer  to  each  problem  separately; 

no confusion  should  result  even  though  some of these  numbers  are  used 

elsewhere  in  the  text. 

. .  

. .  

Example  Problem 1 
. .  

- 
Calculate  the  response  y(t) of a mechanical  oscillator  to 

the  rectankdar  step  function of Figure A. 1. 

Solution:  The  system  equation of motion is 

or,  alternatively, . 

where 

The  input  force  excitation  may be written as 



Mechanical   System F o r c e   E x c i t a t i o n  

FIGURE A.1 MECHANICAL SYSTEM AND INPUT  EXCITATION 



'By Fourier  transform  methods,  the  response  y(t) is given by [ 9 ]  

and  the  Fourier  transform (F. T.)  of the  response by 

where 

Now the F. T. of the  excitation f ( t )  i s  noted by 

-Tct) - F r 4  

so that 

The  response  given  by  Equation (1.5) may be expressed 

as  the  sum 

(.1-. 5) 

(1.10) 

( 1 . 1 1 )  



where 

9p 

-00 

Upon integration 

where 

(1 .12)  

( 1 .  14) 
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Thus, 

or,  in  expanded  form, 

- k t  
4oc t 1 t, 

-. 

An alternative  approach is to  reconsider  Equation (1 .  5) 

beginning  with  the  form 

(1.16) 

(1.17) 



Since 

the  time  convolution  theorem  allows  us  to  express  this  equation as 

which  may be written as 

For  this  problem, 

[ 1.18) 

(1.19) 

(1.20) 

(1.21) 

and  subsequent  .integration  according  to  Equation  (1.20)  produces  the 

resul ts  shown  by  Equation (1. 16). 

Yet  another  approach  (and  possibly  the  1east.tedious  for  this 

problem) is by the  use of Laplace  transforms. 'By the L. T. of Equation  (1.2), 

(1.22) 



where 

NOW rearranging ~ ( s )  gives 

S O  that,  from  Laplace  transform  tables 201, 

where 

1 

(1.23) 

(1.24) 

(1.25) 

After  some  algebra,  y(t)  may be writ ten as shown by Equations (1. 16) . 



E x a m d e  Prob1e.m 2 

Determine  the  forced  response of a simple  supported 

beam  to  the  harm.onic.loading shown in  Figure A:2. 

Solution:  The  equation of motion is 

where 

\ 4  

For  this  problem, we seek a particular  solution  to  Equation (2.1) subject 

to  the  boundary  conditions 

where  the  bending  moment is given by 

From  modal  theory,  the  desired  response is writ ten  as ' 

(2.5) 



r = L  - 
Y 

FIGURE A.2 SIMPLY SUPPORTED BEAM EXCITED BY A UNIFORMLY DISTRIBUTED 

HARMONIC  LOADING 



homogeneous  equation 

and q.( t) is the  particular  solation  to 
J 

If the  loading  can  be  expressed as the  product f(x, t) = f(x) f(t), 

the  generalized  fprce is of the  form 

where 

The  modal  participation  factor is defined  according  to 

so that 

(2:lO) 

(2.11) 

The  quantity r .  may  be  considered as a measure  of the  extent  to  which  the 

jth  mode  participates  in  exciting  the  structural  system. If we interpret  the 

structure as a system  with  selectivity  characteristics  both  in  space  and 

frequency,  this  quantity  provides  an  estimate of the  spatial  selectivity 

of the  structural  system  in  affecting a response. 

J 



Upon substituting (2. 5) into  Equation (2 .6)  with  the  input 

. j' excitation at w = w 

where 

(2.12) 

Thus, 

where C, D, E, and F are  constant  coefficients  with  values  dependent 

upon  the  boundary  conditions. 

F o r  the  boundary  conditions of Equation (2 .3)  the  coefficients 

C, E, and F reduce tc? zero and  the  frequency  equation  reduces  to  the 

simple  transcendental  equation 

and  the  system  modal  (natural)  frequencies  are  given by 

(2. 17) 
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With  the  coefficient D arbitrari ly  set   to.unity,   the  modes  shapes +.(x) 

which  correspond to the  modal  frequencies w a r e  given by 
J 

j 

Let  us  consider now the  particular  solution  to  Equation (2.7). 

With  the  above  jth  mode  shape, 

( 2 . 1 9 )  

By the  substitution of these  quantities  into  Equation (2.7), the  modal 

equation of motion-becomes 

(2.21) 

Note the  generalized  force  points out,  the  intuitive fact  that  loadings 

distributed  antisymmetric  with  respect  to  the  mid-span of the  beam 

contribute  nothing  to the overall  response. In other  words,  the  system 

acts  spatially to accept  energy only in  the  odd-numbered  modes; it 

re jects  all contributions  with  wave  numbers  that  correspond  to  the  even- 

numbered  modes. By any  one of a number of elementary  differential 

equation  methods, 

( 2 . 2 2 )  

134 



where 

(2.23) 

From  Equation  (2.5)  with ( 2 .  18) for +.(x) and (2 .  22) for  q.(t), 
J .  J 

Since  this  series is rapidly  convergent  in j,  the  higher  order  terms  become 

vanishingly small and  may be discarded  with  l i t t le  error.  If the  system 

function  were of the  form 

i p )  = "' H p A  
,hen 

00 

(2.25) 

>t - 4.'. L t TA (2 .26)  

:.nd the  higher  order  terms  become  important for w >> w . 
j 
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Example  Problem 3 

Estimate  the  mean  square  response of a lightly  damped, simply 

supported  beam  to a homogeneous  random  pressure  field  created by a 

speaker  excited  with  bandlimited wvhite'noise  and  directed at normal 

incidence  to  the  structure.  Assume a sound pressure  level  of 143'db,' . 
a spectral  bandwidth 1 0 5  w L 1110, and  the  following  beam  properties: 

-4 2 2 
m = 1.298 x 10 lb. sec  / inch.  

a, = 100 rad/sec.. 

a = 20 inches 

Solution: We seek an approximate  value for the  mean  square  response 

where 

since 

F r o m  the preceeding -problem 

a Y - - K\ k 

( 3 . 3 )  

( 3 . 4 )  



where 

The  higher  modal  frequencies  are  related  to 0 by 1 

so  that 0 / W  = 4, cJ3/W1 = 9, 0 / W  = 16, .etc. 2 1  4 1  

A spectral   description of this  problem now can  be  constructed 

as Figure A .  3 .  The spectrum of the  input is a constant  over  the first 

three  modal  frequencies of the  system.  From  Figure 2 . 3 ,  we  find  the j # k 
terms  can be ignored s-o that 

For simple harmonic  mode  shapes  and  the  use of (2 .  88) for  the  finite  integral, 

From  Figure  2 .4 ,  we le t  I. = 1 for  light  damping. 
J 

Now the pressure  f ield  in db, per  unit width, is   related to G 0 by 



I I 

"I 0 2  03 

I 
FREQUENCY 

FIGURE A . 3  SPECTRAL CHARACTERISTICS OF BEAM PROBLEM 



2 -5 2 
Since 1 dyne/cm = 1.4504 x 10 lb/in , 

and . .  

By assuming Q = 50, we find a t  the mid-span  that 
j 

(3.10) 

(3.11) 

(3.12) 





APPENDIX B 

We examine  the  response  characteristics of the  .tllrke 

system  functions to excitation  categorized ,as a progressive  wave 

field. The mean  square  response is determined  numerically  for  all 

system  functions;  it is determined  analytically  only  for the systems 
2 

H . ( w )  and m . w .  H.(w). 
J J J  J 

The  acceptance  function  for a plane  progressive  wave 

may  be  expressed  in  the  form 



For this  acceptance  function, it is convenient to express  the  integral 

I. in t e r m s  of the normalized  frequency  parameter, p. Thus, 
Jk 

-00 

where 

A 4  

In  order  to  evaluate  this  integral,  the  function A (p)H (p) jk  jk 
is expanded by partial  fractions.  Then, I can  be  expressed as the sum 

jk 
of the  three  separate  integrals, 

Each of these  integrals is now evaluated  separately.  The first integral 



so  that 

Now by letting p =  p- j  in  the first integral  and p = g t j  in  the second  integral, 

This  integral. is equal  to  zero s o  that I ('I  = 0. The second  integral .I (2) 

is given  by 
jk jk 

This  expression  can  be  reduced  to  the  same  form  as.the first integral;  thus 

With I(1) and I both  equal  to  zero, (2) 
jk . jk 

-0 



where R is the  residue of H (p) at  p = r This  integral  may be evaluated 
1 jk  j.1 

by using  residue  theory  and  complex  integration  in  the  upper  half of the 

complex /3 plane.  Since  the  last  two  terms  in  this  expression  have  no  poles 

in  the  upper  half  plane,  they  contribute  nothing to the  value of the  -integral. 

Therefore; 

Since r is the  complex  conjugate of r (r jz = rjl), 
. -,. .*. 

j2 jl 

and the I integral  reduces  to 
jk 

(B. 11) 

(B.. 12) 
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After  much  complex  algebra,  the  results m a y  be  expressed  for j # k. 

(B. 13) 
I 

where 
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F o r  j = k, the  integral  becomes 

(B. 15) 

-00 

where 

This  integral  can  be  expressed as the sum of three  integrals by a partial  

fraction  expansion of A.jB) H.(P); .thus 
J J 

(B. 17) 

The first integral is of the  form 



This  expression  reduces as 

The second  integr.al is 

so that 

B y  Equation (B. 16), 

(B. 21) 

(B. 22) 

The  third  integral I. (3 )  . 
3 jk 

= I  (3)  with j = k; thus the  integral 

I.. can be  determined  from  Equations (B. 13)  and (B. 22). evaluated  at j = k. 
. J  



After much algebra, 

where 

(B. 23)  

(B. 24) 
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The  mean  square  response is then 

and  for  harmonic  modes 

(B. 2 6 )  

W e  note  that I = 0 for j f k and j t k odd. For  the  numerical  integration, 

it is convenient  to.  express  the  integrals I. and I in  the  form 
jk 

J jk 

where R'.') (p), Jjk(p) and C a r e   a s  defined  in  the  text. 1 Jk 
1 

(B. 2 7 )  



For  all   results,  p = 1 and < = = 0. 025; Figures B. 1 
j 

through B. 5 show a normalized  form of the  response  spectral  densities 
2 2 for  the  system  functions H. (w) ,  m.w. H.(w)  and m . w  H.(w).  Tables  B-1 

J J J  J J J ~. ~ 

and  B-2 show the  main  diagonal  contributions  (for  the  first  ten  modes) 

obtained  by  numerical  integration  and by an evaluation of the  closed 

form  results,  respectively.  Similarly,  Tables  B-3  and  B-4  provide 

the  integral  results  for j = 1, 3. . . 9 and k = 1, 2 , .  . . 9. Figure B. 6, 
repeated  in  the  text  as  Figure 3. 35, displays the mean  square  response 

for all system  functions  over 0 s x/l 5 .5.  These  results  correspond 

to  the  analytical  results  for  the first two systems;  the  last  system 

m.w H . ( w )  was  not  evaluated  in  closed  form. 
2 

J J  
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2 

S Y S T E M  
p= I, Cj = 0.025 

2 2 I . H ~ ( u ) ~ ,  n.1 Imju;Hj(wll8n'2 )tnju2Hj(@) I y n c 3  

j = 1  7.712  7.712  7.629 

j = 2  4. 204 (-.3)  1.076  2.457  (-1) 

TABLE B-I '  

j = 3  1. 043  (-4) 

1 

. 6844  5.843  (-2) 

j = 4  

1.047  (-2) ' . 5529 1.415  (-6) j = 5  

2.221  ( -2)  . 5886 8. 981  ( -6 )  

j = 6  5.023 ( - 3 )  ,5335 3.176  (-7) 

j = 7  9.099  (-8) .5245 2. 869  (-3) 

j = 8  1.701  ( -3)  ' .5176 3.085  (-8) 

j = 9  1 1. 198  ( -8)  .5165 1. 053 ( - 3 )  

j = 10 7. 291 ( -4)  . 5144 4. 143 ( -9 )  

/ 

MAIN DIAGONAL CONTRIBUTIONS TO THE  MEAN SQUARE  R.ESPONSE 

(PROGRESSIVE WAVE .- NUMERICAL INTEGRATION OF INTEGRAND) 



n 

Q 
Y .-.) 
3 

TABLE 8-2 

j = 2  4.205 ( -3)  1.076 

j = 3  1.040 (-4) 0.6826 

j = 4  8.986  (-6)  0.5889 

j = 5  I 1.413  (-6)  0.5519 

j = 6  3.178  ( -7)  0. 53.38 

j = 7  9. 085  (-8)  0.5237 

j = 8  3.085  (-8)  0.5175 

j = 9  1. 19:3 (-8)  0.5135 

n 

a 

a 

W 
l- 

3 
J 

> 
W 

I- 
O 
Z 

-.I 

oz 
c9 
W 
I- 
Z 

a 

- 

f 
j = 10  5.107  (-9)  0.5107 

MAIN  DIAGONAL  CONTRIBUTIONS TO THE  MEAN SQUARE  RESPONSE 

(PROGRESSIVE WAVE - CLOSED FORM RESULTS) 



J 
0 

6 2 7 

0 0 2.957 (-5) 

0 9.354-91 4 . 2 d  (- 3) 

0 0 I 

- 3 . 3 9 /  C-/oI 0 

0 0 ul P 
ul 

L" 0 

0 0 

TABLE 8-3.1 INTEGRAL.  CONTRIBUTIONS  TO THE MEAN SQUARE RESPONSE 

(PROGRESSIVE WAVE - NUMERICAL INTEGRATION OF INTEGRAND) 



2 3 4 

1 5 1  I o I  l o  0.5529 0 

0.5335 

0 

9 0 0 0 

9 

5 . 4  74 (02) 

0 

0.f 34  8 

0 

/ .22 3-3  

0 

I. 7ssc 3 1 

0 

0 . 5 1 4 5  

TABLE 8-3.2 lNTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE 

(PROGRESSIVE WAVE - NUMERICAL INTEGRATION OF INTEGRAND) 



I U 

3 4 5 6 7 8 2 9 

3.84 7 (-i, 

0 

-/.704(- 3) 

0 

-L. 517 c6: 

0 

1.088 5 )  

0 

/.OS3 ( -3 )  

0 0 . I  7.1 29 

2 0 

3 

4 0 

0.2457 -2 .797 ( -6 ]  

0 0 

- 4 . 2 9 0 ( - 7  

0 0 5 

6 0 

7 

8 0 

9 

/. +*/ l- 5 )  

0 0 2.t&L9 (-3! 

0 0 0 

0 

0 0 0 0 

TABLE 8-3.3 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE 

(PROGRESSIVE WAVE - NUMERICAL INTEGRATION OF INTEGRAND) 



b Y S T E M :  

4 5 6 7 3 

6 /.502(-31 8.236 1 0 

0 - 7.923 (- 5) 0 

l o  0 

I $ /  O I 0 

0 

0 

1 7 i  0 



I" cn 
W 

TABLE 8-4.2 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE 

(PROGRESSIVE  WAVE - CLOSED FORM RESULTS) 





APPENDIX C 

Shown are  numerical  values of the integral 

0 

where the indices  vary  as j = 1, 2 ,3 , .  . . 9 and k = 1,2 ,3 , .  . . 9; 

the  superscript n var ies   as  n = 1,  2,3. The excitations  are  those  for 

the reverberant  field and  turbulence  only. For  all cases,  the  system 

parameters  p = 1 and c =  0. 025. 
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5 
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7 
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9 

LL= I I m 

U 

I 9 8 7 6 5 4 3 2 
I 

TABLE C-1.1 INTEGRAL CONTRIBUTIONS TO THE  MEAN SQUARE RESPONSE 

(REVERBERANT  FIELD - NUMERICAL INTEGRATION OF INTEGRAND) 



I Q  I 
6 0 0 / d . C / 3  0 3.424 (- 2) 0 

7 0 0 b 16.493 0 3.2 89 (-2). 

8 0 0 0 0 / I  .+99 0 

9 0 0 0 0 /c. 394 

TABLEC-1.2  INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE 

(REVERBERANT FIELD - NUMERICAL  INTEGRATION OF INTEGRAND) 



m 
c 

3 4 

- 5 . 4 4 0 6 4  0 

0 -G.420(-4) 

/G. 69 7 0 

0 / L .  5 9  i 

0 

0 

0 

0 I 

! o  
i 

TABLEC-1.3 . INTEGRAL CONTRIBUTIONS  TO  THE  MEAN  SQUARE  RESPONSE 

(REVERBERANT FIELD - NUMERICAL INTEGRATION OF INTEGRAND) 



1 5 1  i l o l  

1 7 1  I O 1  I o  I I o  
I B l  O 1 l o /  
9 0 0 0 

7 

3.3 31 (-5) 

0 

3 . 7 5 1  (-6) 

~ 

0 

TABLE C- 2.1 INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE 

(REVERBERANT FIELD - NUMERICAL  INTEGRATION OF FILTER  APPROXIMATION 



I 

2 

3 
- 

4 

5 

6 

7 

I 2 3 

0 i i o  I 

i o 1  I 
o I  

4 

0 

0 

0 

0 

9 

5 . 7 4 2  (- 2; 

0 

2 . 5 7 4  

0 

5 . L L 4  

0 

4 . 8 2 5  I 
25.927 1 

TABLEC-2.2  INTEGRAL CONTRIBUTIONS TO THE  MEAN  SQUARE.  RESPONSE 

(REVERBERANT  FIELD - NUMERICAL INTEGRATION  OF  FILTER  APPROXIMATION 



2 0 2 3 .739  0 /.86 5 0 0 . 2 2 6 4  0 

3 0 70. 944 0 0 . 4 2 4 9  0 9.183 (- 2)  

4 0 

5 0 

0 4 7. BO/ 0 / . z r o  (-2) 0 

1 0 1 5 2 . 9 1 6  
0 -0.3449 

, 

6 l  O I 0 
0 34 0 

7 0 0 0 3 0 .  2 t 0  

8 0 0 0 0 

0 0 0 9 

I 

TABLEC-23  INTEGRAL CONTRIBUTIONS TO THE MEAN SQUARE RESPONSE 

(REVERBERANT FIELD - NUMERICAL  INTEGRATION OF FILTER  APPROXIMATION I 



1 

E 2 

i 
k- 

E 

S Y S T E M '  

9 I 2 3 4 

Q 0 

7.7'8 (- L> 0 0 

0 I . O t l  c- 2 )  0 

0 0 7.197 c- 4) 

0 0 0 

6. b42C-7) 0 

0 0 0 

d 0 

0 0 0 

TABLE C-3.1 I N T E G R A L .  CONTRIBUTIONS  TO  THE  MEAN SQUARE RESPONSE 

(REVERBERANT FIELD - FILTER APPROXIMATION IN CLOSED FORM) 



2 6 

0 

S.996L-$ 

0 

/a697 

0 

39.373 

0 

3 4 

0 
I 

I. O 19.066 

3 l  0 

0 

O I  4 
"I---- 

0 0 

TABLEC-3.2  INTEGRAL CONTRIBUTIONS  TO  THE  MEAN SQUARE RESPONSE 

(REVERBERANT FIELD - FILTER APPROXIMATION IN CLOSED FORM) 



1 /I p =  I 
S Y S T E M : mjmkw4 Hf(w)  Hk(W), 5;  = 0.025 

0 
J x- 1 

I 5 4 3 2 
I 

' 6  7 8 .  9 

0 I. 270 (-2 ) 

/ .694(-2) 0 

0 3: 81 7(-3) 

4.588 (-3) 0 

0 /. 872 (-3) 

4.62 5 (-3) 0 

0 3.488 (-3) 

23 .568  0 

0 / 9 . 2 5 3  

0 

5.053 (-2 

3 l  1 5 . 6 2 6 ( - 2 )  0 

1.49 71-2) 0 

I 152 .998  C.O82(-3)  0 0 

6 1  0 I I o  3 L.594 0 

7 i  l o  i 3 0 .  8 2 f  
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APPENDIX D 

" TABLE OF SELECTED INTEGRALS 

This  table of integrals is a partial   l ist  of integrals 

encountered  in  using a frequency  domain  approach  to  determine the 

mean  square  response of single  degree of freedom  systems to random 

excitation. In most  instances, the  integrand is writ ten  in  terms of a 

basic  system  frequency  response  function, H ( w ) ,  and a spectral  density 

function, S ( w ) ,  both defined as follows: 

H ( w )  = basic  system  frequency  response  function 

1 
H ( w )  = 2 2  

(0 - - ) t i 2 t ; o )  w 
0 0 

.b 1. 
s = a + i b = - s  

1 2 

w = a 2 + b  
2 2 
0 

I 



* 
H (w) = 

H.(") - - 
J 

conjugate of H(w)  

system  frequency  response  function  at the modal 
frequency w. 

J 

H . ( w )  - - 
J 

H . ( w )  
J 

1 
2 2  

(w. - w ) + i 2 5 .w .w  
J 3 3  

1 - 

186 



S(w) = spectral  density  function 

2 2 2  
( Y ( P  t(r t u )  
2 2 2 3 ,  S(w) = 

T ( W  - s 3 )  (.w - s4) 

U(t) = unit  step  function 

t <  0 

6(t) = unit  impulse  function,  defined by the  integral 

7 b(t - t ) f(t)dt = f(t ) 

. m  
0 0 



TABLE OF INTEGRALS 
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-a3 i 

= 2 r i  e (cos a t  t s i n  a t)U(t) 
-b t 

1 
r 

1 

i ( w  - w )  

T r6 (w  - w )  t I d w  = 

I H(w) e d w  = - e s i n  a t  U(t) 
i w  t 2~ -bt 

a 

2 n  e U(t) 
i w  t 

= - 2 ~ i H ( w )  e (cos  a t  t - s i n  at) U(t) 
-b t  b t i w  

a 

r 

-b t b t iw  - 1  
= 2nH(w) bid'-. (cos a t  t - a 



-a3 /m 

-a3 /m 
a3 

I 
-a3 

-a3 /m 
-a3 /m 

-a3 i 

/H(w)l dw = 
Tr 

2bw 
2 
0 

IH(w)l dw 

(b2 - a' t w ) 
2 

" 
TI - 

2b 

( C C O S  u t  t -  W 

a 
D sin w t) 

Trb 
2 

- " 

W 
0 

2 2 
(a - 3b ) 

H(w)/  dw 
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TI W 

- - e a C cos at t (bC t - D) s i n  at  U(t)  
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2 2 
2ab w a 1 
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o e  e 



2 2 2 2  
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L 
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(17) for R 3  1 
R1 I C + -  b a D) cos a t  t D s i n  a t  1 
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[ See (17), (18) f o r  R1, R3 '  xlJ x31 



~~~~ ~ ~ ~ ~ ~ ~~ 

For s = s (a = P and cy= b) the integrals (17), (18) and (19) reduce  to  equations (20, 

(21) and (22) respectively, 
1 3  

l4 d w  = 
a' t 3b2 

8 b  w 
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